The crystalline lens, the cataract and its surgical treatment
The crystalline lens

position:
- behind the iris
- suspended by the zonular fibers

structure:
- capsule
- cortex
- epinucleus
- nucleus

function:
- to focus clear image on retina
Development of the human lens

- origin: ectodermal
- the surface ectodermal plate thickens to form a lens placode (precursor of the lens, at 25th gestation day)
- the capsule closes the proteins of the lens from the immune system
- lens proteins can induce autoimmune reaction (trauma)

Disorders of the lens

1. position (ectopia lentis)
 - primer, ocular:
 - congenital
 - buphthalmos
 - traumatic
 - exfoliation
 - systemic:
 - Marfan syndrome
 - Weill-Marchesani syndrome
 - Homocystinuria
 - Ehlers-Danlos syndrome

2. size
 - microlentis

3. shape
 - spherophakia
 - coloboma

4. transparency

Cataract

- the water and protein components of the crystalline lens is changing (age, drugs...)
 - degeneration and opacification of lens fibres
 - formation of aberrant fibres
 - deposition of other material in the lens
 - disorganization of the lens fibres
- cataract: visible opacification of the lens
- in greek: „waterfall“, cataract patients can see like through a waterfall
Risk factors of cataract

- age:
 - 65-75 years: 50% of the population is affected
 - above 75 years: the quality of life is decreased by cataract in 70%
- diabetes mellitus
- obesity, smoking, alcoholism
- corticosteroids
- injuries, traumas
 - blunt: after months/years of injuries (sport, accident)
 - perforating trauma: immediately after capsular rupture
- glaucoma (mostly closed angle glaucoma)
- recurrent iridocyclitis (because of the inflammation and the steroid treatment)
- long term exposition of UV light
- congenital infections: herpes, rubeola
Types of cataract I.

stationer:
 • congenital
 • intrauterine:
 • rubeola
 • toxoplasma
 • cytomegalovirus
 • parotitis epidemica (mumps)
 • morbili
 • intrauterin steroid treatment/radiation

progressive = acquired:
 • presenile and senile
 • diabetic, traumatic, pharmacological-induced
Types of cataract

Laterality:
- unilateral (injuries)
- bilateral (age/drug-related), mostly with assymetrical developing

Maturity:
- immature: with good red reflex
- mature: diminished red reflex
- hypermature: no red reflex

Localisation:
- posterior subcapsular - diabetes, steroids, inflammatory diseases, injuries, at younger age
- anterior subcapsular: after blunt injuries
- cortical and nuclear: older age, excess UV exposition
Central posterior cortical cataract after steroid medications
Total cataract after uveitis (with posterior synechia)
Morgagni cataract: liquified cortex, the nucleus is sinking inside the lens capsule
Congenital cataract; surgery: as soon as possible, against amblyopia
Congenital rubeola cataract
Leucocoria (white pupil): congenital cataract (differential diagnosis!)
Anterior and posterior cortical cataract
• upward subluxation and cataract formation in Marfan syndrome: elongated zonular fibers
• downward subluxation and cataract formation:
 • in Weill-Marhesani syndrome (+spherophakia)
 • homocystinuria
lenticonus anterior and posterior:
congenital, usually unilateral
Alport syndrome: anterior lenticonus (+nephritis and hearing loss)
Symptoms of cataract

- slowly decreasing visual acuity
- blurring vision
- dimming and fading of colors
- poor/bad night vision
- visual problems in sunlight (glare)
- double vision (can be unilateral)
- myopic shift: improving near vision
- the patients go to an optician/optometrist for glass prescription
Secondary findings of cataract

- complications of cataract

- secondary glaucoma:
 - angle closure due to swelling of the
 - phacolytic glaucoma and lens induced uveitis in hypermature cataract
- anaphylactic reaction by the products of hypermaturity
- subluxation and dislocation of hypermature cataract
Diagnosis

- visual acuity test
- slit-lamp examination:
 - transparency of the lens
 - position of the lens
 - examination after dilating pupil
Treatment

Indication for surgical treatment:

1. if the patients is in trouble with their vision in everyday’s regular life
2. visual acuity decreasing is cataract-related
3. if secondary complication is presented (uveitis, glaucoma)
History of cataract surgery I.

- B.C. 2150: Hammurapi’s law mentioned „reclination of the lens”
- B.C. 600: India: reclination of lens was the common procedure
- 1745-: removing of the cataract
History of cataract surgery II.

- 1917: Barraquer – phacoeresis
- 11.29.1949: Sir Harold Ridley: first IOL implantation
- 1965: Charles Kelman: first phacoemulsification
Anaesthesia

- **systemic** = narcosis:
 - infants
 - poor cooperation

- **local**:
 - *retrobulbar*: injection through the eyelid to the retrobulbar muscle cone – total motorious and sensorious block
 - *peribulbar*
 - *topical*: eyedrops to the surface (and Lidocain to the anterior chamber)
Types of surgery

- "large incision", with suture:
 - ICCE: intracapsular cataract extraction: with capsule
 - ECCE: extracapsular cataract extraction: without capsule

- "small incision", without suture:
 - phacoemulsification
ICCE

• the whole lens is removed by a cryo-tip through a large incision
• today: only in cases of severe subluxation of the cataractous lens
ECCE

- large incision
- opening the capsule
- removing of the lens manually in one piece (expression)
- the posterior capsule remains intact
- rigid intraocular lens is implanted in the capsular bag
- wound is sutured
Phacoemulsification

- today's modern cataract operation
- clear corneal, small incision (<3.0 mm)
- closed system, relative high pressure in the eye
- nucleus fragmentation in the capsular bag
- using of high vacuum and ultrasound energy
- implantation of foldable intraocular lens with a cartridge system
- fast wound healing and visual rehabilitation
- possibility of one-day surgery
Phacoemulsification

Clear corneal small incision, CCC, hydrodissection, nucleus breaking into pieces, phacoemulsification of the nucleus pieces, aspiration of the cortex, implantation of IOL
Intraocular lenses

anterior chamber lens (ACL)

Between the cornea and iris:
after zonulolysis or trauma

posterior chamber lens (PCL)

in the capsular bag
Intraocular lenses

Anterior chamber lenses (ACL):

- after posterior capsule rupture, if there is no enough lens capsule to hold the IOL

- disadvantages:
 - chronic trauma of the iris
 - development of secondary glaucoma
 - damage of the corneal endothelium
Intraocular lenses

Posterior chamber lens (PCL):

- monofocal
- multifocal (FDA: 1997-)
- accommodative

Optic:

- spherical
- aspherical
- blue light blocking (to save RPE)
Planning of diopter of the IOLs

• planning the diopter of the IOL = „biometry”
• keratometry: to measure corneal curvature
• axial length measurement:
 • ultrasound
 • laser interferometry
• mathematical formulas to calculate the diopter of the IOL
Surgical complications

Intraoperative:

- chorioideal bleeding (can be severe suprachorioideal bleeding – loss of vision)
- iris injuries, iris bleeding
- rupture of the posterior capsule: prolapsus of the vitreous body
- vitreous loss: increased risk of retinal detachment
- lens material sinks to the vitreous cavity (dropped nucleus - vitrectomy)

Postoperative:

- wound dehiscence (leaking)
- endophthalmitis: purulent inflammation of the vitreous cavity (and anterior segment)
- transitional increasing of the intraocular pressure
- retinal detachment (decreasing VA)
- macular oedema (decreasing VA)
- ptosis of the eyelid (retrobulbar anaesthesia)
Endophthalmitis

- severe intraocular inflammation
- prevalence < 5 of 10000
- vision-threatening
- 3-5 days after surgery
- pain, redness, visual loss
- therapy: antibiotics and surgery
Secondary cataract

- months or years after cataract surgery
- sign: decreasing visual acuity
- reason: lens epithelial cells growing in the capsular surface
- outcome: thickening of the capsule
- treatment: YAG laser capsulotomy
Outcome of cataract surgery

- one of the most frequent surgical procedure
- high success rate, rare complications
- good surgical outcome >95% (=no serious complication and significantly improved visual acuity)
- visual acuity is influenced by retinal diseases (diabetic retinopathy, AMD…)

Take home messages

• cataract is the opacification of the crystalline lens
• the treatment of cataract is surgical
• indication is individual
• during surgery the opacified lens is removed and an intraocular lens is implanted
• after surgery, perfect visual acuity is expected if the retina, the optic nerve and the cortex is healthy